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The present paper concerns the pro agation of harmonic vibrations in a semi-infinite rod 
with nonlinear properties. The prob em is solved on the basis of the harmonic linearization P 
method. 

The problem of the propagation of vibrations in nonlinear media is of great practical in- 
terest. One encounters it both in nonlinear acoustics [1] and in nonlinear optics [2]. Further 
the important effect of internal friction in materials is generally describable by means of 
nonlinear equations [3]. In describing the dynamic properties of complex structures it is 
possible in many cases to approximate the structure by a continuous medium. The pioper- 
ties of this medium often turn out to be nonlinear. In both of these cases it is the defining 
equations (i.e. the equations relating the stresses to the strains) which are nonlinear. 
This range of problems also includes those concerning vibrations in various classical non- 
linear media (e.g., elastic-plastic, rigid-plastic, elastic-viscous-plastic media, reinforced 
media, etc.). 

Problems on nonsteady-state perturbations in classical nonlinear media have been attrac- 
ting the attention of numerous researchas over the past several years (see [4 to 6] et al.). 
However, to the author’s knowledge vibrations have not been dealt with thus far. 

We shall solve the problem of vibrations in the simplest case of a semi-infinite rod for 
certain types of nonlinearities. The solution will be approximate, giving a clear picture of 
the vibration field. 

1. Let us consider longitudinal vibrations in a homogeneous semi-infinite rod x > 0. The 
rod dynamics equation is 

i3Ql a2- m 8% I at2 = 0 (1.1) 

Here u is the displacement of the rod cross section along the z-axis, Q is the tensile 
force in this cross section, t is time, and m is the linear msss of the rod, which is constant 
by hypothesis. We assume that strain in the rod is muall and conforms to Expression 

8 = au/ ax (1.2) 

which does not contain nonlinear terms. 
We further assume that the defining equation is of the form 

Q = Q (e, ae / at) (1.3) 

so that the tensile force in any rod cross section depends solely on the strain and its rate 
of change in the smue cross section. For simplicity we assume that the function Q is an 
odd function of its agumenta 

Aa the boundary condition for x = 0 we take one of the following: 

u = A, cos a, Q = B,cosot 

The variables a and ‘e must tend to zero as x + by, 

(1.4) 

2. One of the simplest and most effective approximate methods of nonlinear vibration 
theory is that of harmonic linearization. This method has been widely used in automatic con- 
trol theory and in the theory of vibration absorbing systems for the analysis of nonlinear sys- 
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tans with a finite nnmber of degrees of freedom [7 and 81. An essential feature of this metb- 
od is the simplicity and exceptional clarity of the physical &ults which it yields. We shall 
employ it to analyze the simplest nonlinear systems w&b distributed parameters. 

In accordanac with the harmonic linearization method we assume that the strain s in 
each cross section varies with time according to a nearly harmonic law, 

e = a (2) cos Iot - 9 (41 (2.1) 

Here o is the strain amplitude mtd cp is its phase for the cross section with the coordin- 
ate x. 

Next, we approximate the nonlinear function Q(?, ~s~~~) in (1.3) by the linear function 

Q (e, ae / &) ‘=r: gu f (~/m)~~/~~ (2.2) 

The coefficients q and t in this expression are independent of time and are chosen from 
tbe requirement that tbe amplitude aud phaee of the harmonic of frequency o in the right and 
left-hand sides of Eq. (2.2) be equal for harmonic motion (2.1). It has already been shown 
[7 and 81 that the q and r which satisfy this requirement are as follows: (2.3) 

40 ‘%a 

As a remit of the above linearization, nonlinear Eq. (1.3) has been replaced approxima- 
tely by linear Expression (2.2). Introducing tbe latter into (1.1) and taking account of (1.2), 
we obtain 

a 

az 
2!5+ 

q ax (2.4) 

This equation coincides in form with the equation of longitudin~ vibrations of a viacons- 
elastic rod. The difference lies in the fact that in this case q and r depend on the strain 
amplitude a, i.e. they are aot known in advance. Since q and r depend on the strain ampli- 
tude, it is expedient to differentiate Eq. (2.4) with respect to x and to introduce the strain 
e as an unknown, 

( 

r at3 
1 

azt3 
&qe_i~-g -mF=O (2.5) 

Let us mbstitute trial solution (2.1) into Eq. (2.5). Setting the coefficients of the cosines 
and sines equal to zero, we obtain two eqnatioas for determining the unknowns a and Q. 

(2.6) 

Let us note the fact that not every solution of system (2.61, (2.7) constitutes s solution 
of the above problem. From the conditions at infinity it follows that the amplitude a must 
decrease witb increasing z. This means that 

a > 0, da / dr < 0 (2.8) 
Clearly, the aolntion of system (2.61, (2.7) with arbitrary q aud r cannot be constructed 

in closed form even under limitations (2.8). However, such a solution can be constructed 
for certain particular q and r. 

‘Thus, we have constructed equations for determining the strain. The displacement can 
be readily found by integrating over z in Expression (1.2). 

Let us consider just what we have achieved by the formal appIication of the harmonic 
linearization method. Our starting point was system (l.l), (1.2), (1.3) equivalent to a single 
nonlinear partial differential quatioa. By employing harmonic linearization we obtained 
system (2.61, (2.7) of two ordinary nonlinear equations. Thus, one nonlinear problem has 
been reduced to another problem which is also nonlinear. The latter prdblem is definitely 
simpler than the original one, however. 

3. Let nonlinear relation (1.3) be of the form 
Q = G sign e + H sign (ae / at) (G, ?I = const) 

Eq. (3.1) is the defining equation for a 
(3.1) 

“material” with relay elastic and dissipative 
characteristics. It is easy to see that for C = 0 Eq. (3.1) re ers f to a rigid-plastic material. 

Computing the linearization coefficients from Formulas (2.3), we obtain 
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q=gla, r=hla, g=4G/n, h=4Hln (3.2) 
Substituting them into Eqs. (2.6) and (2.7), we have 

d2qJ 
s + m&a = 0, 

dzq -- 
- g &’ - ’ (3.3) 

Integration of the second Eq. yields the Expression 

(~=‘~e+g/hln(i+%‘x) (3.4) 

where cp,, and y are integration constants. Substituting (3.4) into the first Eq. of (3.3), we 
obtain the following Expression for the amplitude: 

a= gW+h2) -f2 
mo*h2 (1 + rxj2 

(3.5) 

We can find the strain 8 by substituting (3.5), (3.4) into (2.1), and the displacement u 
by integrating ,e, 

e == gW + W Re ~~~~~~~~~~ 

m&h2 (1 ,_ yxy+ig / fi 

u= g(g2+h”) Re 
_’ 

m&ha (1 + ig, ;;;y@;$tig/h 

(3.6) 

(3.7) 

If the displacement varies according to law (1.4) in the cross section x = 8, then .the 
constants y and ipe must be chosen as follows: 

mwaA& 
r= 

gv-Fi=’ 
‘po = - arc tg + 

Introducing these quantities into (3.7), we finally obtain 

(3.8) 

(3.9) 

We note the fact that the vibration damping conditions as x + m (2.8) are fulfilled auto- 
matically. 

Expression (3.9) implies that the phase velocity of the waves in the rod 

increases with distance from the vibration source. The vibration amplitude A(x) diminishes 
according to the law 

A(x)=Ao 1+ 
( 

This readily yield@ the inequality 

A (x) < 
gw 

mo2hx 

(3.11) 

(3.121 

The vibrator oscillation amplitude A, does not appear in this expression, so that the vi- 
brational level cannot be raised above a certain limit (which depend9 on the properties of 
the rod “material” and on the value of x) by any increase in the vibrator oscillation ampli- 
tude for any fixed Z. 

Let us consider the case of a rigid-plastic material. As noted above, this reqnires that 
we set G = 0. Tahing the limit in solution (3.6), (3.9), we have 

2 = 0, u = A0 CO8 Or, a+-; z>O, x=0, a=0 (3.13) 

Our conclusion is aa follows: In a rod of rigid-plastic material the vibrations are local- 
ized in the cross section x = 0 in which the vibrator lies. 

4. Let the defining equation be of the form 

Q = ce + H sign (I% I at) (4.1) 
It is clear that this expression is the strain law for a rigid-plastic material with linear 

reinforcement with allowance for the Bauachinger effect. 
The linearization coefficients are 

Q = c, r=hla, h=4HJn (4.2) 
Eqa 12.6) and (2.7) then become 
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d2a 4’ 2 
cyp---ca yg ( ) d% + If dsa + mo2a = 0 

h(~)‘+&$ s+ca$$=O 

(4.3) 

(4.41 

Our attempts to solve this system of equations with its four integration constants proved 
unsuccessful. We were able, however, to find a solution containing two integration cons- 
tants and satisfying conditions (2.8). This solution is 

a = ao.- 82, ‘p =cp,+az (4.5) 

Its direct substitution into system (4.3). (4.4) shows that the constauts cx and fl must 
have the following values: 

a = (md / c)‘/‘, #l = ah / 2c (4.6) 

The constants a0 and ‘p. are thus far arbitrary and are determined conventionally for 
x = 0. A solution of the form (4.5) is valid only for those z for which a > 0, i.e. for 

o<x<=** x* =ao/fl (4.7) 

For r > x+ we assume that 
a = 0; ‘P = cp* = W. + ax+ (4.8) 

A direct check shows that this solution satisfies system (4.31, (4.4). In addition, it is 
continuously conjugate to solution (4.51. Substituting the resulting expressions for the am- 
plitude and phase into (2.11, we obtain the following expression for the strain: 

e = (a0 - px) cos_(ot -TO -ax) (0 < x < x+1* F, = 0 (x > x*) (4.9) 
I,et thk boundary condition for x = 0 be the second condition of (1.4). Satisfying this 

equation by means of the linearized expression for the force Q, we obtain the following 
values for the integration constants: 

a0 = )/Bo2-ha/c, ‘PO = arc tg (h / aoc) (4.10) 

Hence we see that the solution constructed above has meaning only when the amplitude 
of the fora applied in the cross section x = 0 is larger than h. From the physical stand- 
point this means that the force Bu must exceed the yield stress !i in (4.11. If the force B, 
is smaller than H, then there is no motion at all in the rod. 

The displacement II in the problem under discussion can be found by integrating strain 
expression (4.9). The’ result is as follows: 

a0 - Px 
u=- ----sin(ot---To-ax)+ 

a 

+ &[cos(wt-tpo-ax)-cos(ot-~o-ax,)], o<x<x* 
u = 0, x > x* (4.111 

Hence we see that the displacement in the initial zone of the rod constitutes a superpo- 

sition of a travelling and a standing wave. There is no motion for z > x,,. The coordinate zz 
of the motion zone boundary can be found by substituting Expressions; (4.10) and (4.6) into 
(4.71, 

x* : 
(4.121 

5. Let the rod be made of an elastic-plastic material with a linear reinforcement law. 

The behavior of the rod under developed plastic strains is described by the system 

Q = CE + q (E - El), 
where F, is the plastic strain (Fig. 1). 

cl (E - cl) = H sign (ae, / at) (5.11 

The function sign (dE1 /ihI is equal to + 1 for a positive rate of plastic strain and to - 1 
for a negative rate. We further assume that with the rate of plastic strain equal to zero, sign 
takes on a value in the range (- 1, + 11 which is dictated by the second Eq. of (5.1). With 
the sign function so defined, system (5.1) can be used to describe rod loading and unloading 
processes both with and without plastic strains and with allowance for the Bauschinger ef- 
fect (Fig. 2). 

Analysis of Eqs. (5.1) leads to the following conclusions. In the absence of plastic 
strains the rigidity of the rod is e 
force Q attains the value H(c + c t ‘f” 

al to c + cl. 
/ct. 

Plastic strain begins when the distending 
The retnforcement of the rod is determined by the 

parameter c. 
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Fig. 1 Fig. 2 

Let us consider the boundary conditions as x + 00. An elastic-plastic rod can move in 
such a way that plastic strains do not arise. In this case the vibrations need not tend to 
zero as x + 00 as assumed above. Henoe, the Sommerfeld radiation condition must be talcen 
as the boundary condition. This condition states that the waves go out to infinity and do 
not return. 

In accordance with the method of harmonic linearization we set 

e, E b cos (ot - $) (5.21 

where b and $ are the amplitude end phase of the plastic strain. 
Further, we approximate the nonlinear h. --tton in (5.1) by a linear function [7 and 81, 

Let us substitute this approximation into (5.1) and find expressions for & and Q in terms 
of E, 

h ael 
e=81+erbnl- at ’ Q=ce,+(++l)&$$ (5.31 

Differentiating (1.11 with respect to x and making use of Formulas (112) and (5.31, we ob- 
tain the following Eq. for determining the plastic strain: 

(5.4) 

Finally, let us set the Expression (5.21 for E, into (5.41 and collect the coefficients of 
the sines and cosines. This yields a system of two ordinary equations for determining the 
amplitude and phase of plastic strain, 

(5.51 

- b~+2~~]-(~+I)h(~)a+~=o (5.6) 

The above system of equations has the solution 

o = b, - fh, * =Qo +ax (5.7) 
are integration constants and Q and fl are easy to find by substituting Ex- 

?nto system (5.51, (5.61, 

a = (m d / c)“‘, fl=hu!2c (5.81 

Solution (5.71 has meaning only for that portion of the rod where the amplitude b is posi- 
tive, i.e. for x satisfying the inequality 

o<x<x*, x* = bo I fJ (5.9) 
For x > x, we must take 

( $*=~olo+x*, r= (53) b = 0, 9 = S, + T (” - x*) (5.10) 

Direct substitution of solution (5.101 into system (5.51, (5.61 shows that it satisfies this 
system. In addition, it is continuously conjugate to solution (5.7) in the ran 
fact, the amplitude and phase of plastic strain ‘C$ are continuous at x = x+. B 

e 0 < x < x+. In 
ot by virtue of 

relations (5.31 this means that the total strain aud stress in the rod are also continuous. 
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Thus, for x > x* the plastic strain equals zero. The solution just constructed satisfies the 
boundary condition at infinity, since dvY/dr > 0, b = 0 as x + =. 

6. Let us determine the integration constants and find the basic parameters of the prob- 
lem, i.e. the total strain e and the displacement u. This is most readily accomplished by 
writing solution (5.2) in com,plex form, 

sI _^ @+-iJ) (6.1) 

Conversion to the complex form is possible because reIations (5.3) are linear with res- 
pect to E;. Of course, only the real parts of (6.1) and all subsequent expressions have 
physical *meaning. Substituting (6.1) into (5.3). we obtain 

Q = [cb + ih (F)] eiwt--i*, E=(b++)eiOf-iJ’ 

Making use of relation (6.2) aud boundary condition (2.4) for z = 0, we readily obtain the 
initial values of the amplitude apld phase of plastic strain, 

(6.3) 

From this we see &t the soluuon oonstructed has meaning only if the amplitude of the 
constraining force satisfies the inequality 

Bo > h (c + CJ / Cl (6.4) 

This is the condition which must be fulfilled in order for plastic strains to occur in the 
rod. It is approximate and differs from the exact condition only by the unimportant factor 
4/n whioh enters into h, 

From Formula (6.2) we see that the strain amplitude is given by 

a = (b2 + ha t c~~)“~ (6.5) 
orcwith allowance for the explicit expression for b, 

a = [(b, - Bs)~ + h2 / c,~]“’ (0 < z < r*)* a=hlc, (x > x*1 (6.6) 

This implies that in the initial portion of the rod the strain amplitude diminishes from 
its maximum value at the cross section x = 0 to the value h/cl and then remains constant 
and essentially equal to the maximum elastic strain. 

Let us find the displacement u. To do this we substitute into (6.2) the explicit expres- 
sions for b and r,6 from Formulas (5.71, (5,101, and then integrate over x taking into account 
the requirement that u must be continuous at z = x+ as well as the radiation condition as 
x + c+ The result is as follows: 

o<x<x,, 
b h P 

i-z---- ClU as 
clot-i+ 

h 
X>% g=.-.--e lot -A+ 

ClT 

(6.71 

The quantities appearing in this expression have already been defined. From Expression 
(6.7) we see that for I: > X. the constant-amplitude wave goes out to infinity. For 0 < x < z+ 
the vibrations constitute a superposition of travelling and standing waves, where the trav- 
elling wave decreases in amplitude with distance from the vibration source. 

7. Let us consider some conclusions. The cross section z = z* is the boundary between 
that portion of the rod in which plastic strains occur and the portion in which the strain is 
purely elastic. An explicit expression for n* can be obtained by substituting into (5.9) the 
expressions for b, from (6.3) and for 6, u from (5.81, 

(7.1) 

Hence we see that the zone of plastic strains is larger the larger the reinforcement of 
the rod material, the smaller its linear mass, and the lower the vibration frequency. Specifi- 
cally, if the rod material is ideally plastic (c = 01, then (7.1) implies that x1 = 0, i.e. the 
zone of plastic strains is localized in the cross section containing the vibration source. 

We note the fact that the plastic strain zone is at the same time the zone where the vi- 
bration intensity is highest, i.e. the zone characterized by large displacements. In the elas- 
tic range (x > x,) the vibration amplitude is minimal, and, as we see from (6.71, does not 
depend on the vibrator strength, but rather on the properties of the rod material and (as is 
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evident from the expression for yl on the frequency: the higher the frequency, the smaller 
the vibration amplitude. 

Finally let us consider the instantaneous photograph of the rod, The plastic strain zone 
a- x* constitutes a sequence of plastic strain segplents of differing sfgn. The number of 
these segments is e 

9 
nal to the number of extrema in el. This number can be readily deter- 

mined from Formula 5.21, 

u=Q#*-$01/n (7.2) 

Substituting in the repuired quantities, we obtain 

(7.31 

If the perturbation enplitnde B exceeds the yield stress considerably and if the reinfor 
cement of the material is not too large, the second term in sqnare brackets is negligibly 
small. Leaving out this term, we have 

n=2B/nh (7.41 

Hence we see that tbenmnber of segments can be substantial. ‘Ibis in turn renders dif- 
ficult the construction of an exact solution, since in this case we are dealing with a seq- 
uence of loading and “unloading” waves 14 and 51. 
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